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Abstract7

Cognitive models of choice and response times can lead to deeper insights
into the processes underlying decisions than standard analyses of accuracy
and response time data. The application of these models, however, has
historically been reserved for the authors of the models, and their associates.
Recently, choice response time models have become more accessible through
the release of user-friendly software for estimating their parameters. The
aim of this tutorial is to provide guidance about the process of using these
parameter estimates and model fits to make conclusions about experimental
data. In particular, we discuss the steps required to select an appropriate
characterization of a given data set in terms of the parameters of a choice
model. We also discuss how to evaluate the quality of the agreement between
model and data, including some guidelines for presenting model predictions
for group-level data.
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Introduction9

Evidence accumulation models of choice response time (RT) are increasingly used to10

examine the psychological processes underlying rapid decisions. The central assumption11

of these models is that the decision maker accumulates evidence for potential choices and12

makes a decision once the evidence reaches a threshold amount. The predicted time to13

make a response is the time taken to accumulate evidence, plus “non-decision time”, which14

is the time for other necessary processes, such as stimulus encoding and response execution.15

The parameters of evidence accumulation models quantify different aspects of the decision16

process, such as the rate of evidence accumulation, response caution (the amount of evi-17

dence required for a response) and response bias (different caution for different responses).18

Variations among experimental conditions in estimates of these parameters, and in associ-19

ated estimates of non-decision time, can provide insights into latent psychological processes20

beyond those available from traditional measures (i.e., independent analyses of accuracy21

and mean RT).22
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The evidence accumulation modeling approach has been successfully applied to many23

different paradigms, including: simple perceptual decisions (Usher & McClelland, 2001),24

visual short-term memory (Smith & Ratcliff, 2009), absolute identification (Brown, Marley,25

Donkin, & Heathcote, 2008), lexical decision (Ratcliff, Gomez, & McKoon, 2004; Wagen-26

makers, Ratcliff, Gomez, & McKoon, 2008), the link between depression and anxiety (White,27

Ratcliff, Vasey, & McKoon, 2009, in press), and the neural correlates of behavioral mea-28

sures (Farrell, Ratcliff, Cherian, & Segraves, 2006; Forstmann et al., 2008; Ho, Brown, &29

Serences, 2009).30

Many evidence accumulation models have been proposed as explanations of a vari-31

ety of rapid choice tasks, including Ratcliff’s diffusion model (Ratcliff, 1978), the Poisson32

counter model (Pike, 1966; Van Zandt, Colonius, & Proctor, 2000), the accumulator model33

(Smith & Vickers, 1988), the leaky competing accumulator model (Usher & McClelland,34

2001), the linear and non-linear ballistic accumulator models (Brown & Heathcote, 2005,35

2008). We will focus on the recently proposed linear ballistic accumulator (LBA) model36

because it is mathematically simple, and because it was the model used by the authors37

of the data set we use as an example in this tutorial (Forstmann et al., 2008). Although38

our focus here is on the LBA model, the techniques we illustrate for model selection and39

evaluation are applicable to all evidence accumulation models.40

Applying an RT model to data involves – at minimum – estimating parameters from41

data. Brown and Heathcote (2008) and Donkin, Averell, Brown, and Heathcote (2009)42

provide simple computational routines to make such estimates possible for the LBA. Sim-43

ilarly, Vandekerckhove and Tuerlinckx (2007) provide methods and advice for estimating44

the parameters of Ratcliff’s (1978) diffusion model (see also Tuerlinckx, Maris, Ratcliff, &45

De Boeck, 2001; Tuerlinckx, 2004; Vandekerckhove & Tuerlinckx, 2008). More generally,46

Myung (2003) and Van Zandt (2000) provide excellent tutorials on how to estimate param-47

eters for psychological models in general. However, when using a choice RT model, it is not48

a trivial step to go from estimating free parameters to psychologically meaningful conclu-49

sions. The aim of the current tutorial is to bridge the gap between parameter estimation50

and interpretation. We present a step-by-step analysis of data from a simple perceptual51

two-choice task (Forstmann et al., 2008) to illustrate this process.52

The Linear Ballistic Accumulator53

Figure 1 illustrates decision processing in a pair of LBA units. Suppose that the figure54

represents a single trial in Forstmann et al.’s (2008) experiment, in which participants must55

choose whether a cloud of dots appears to be moving to the left or to the right, requiring56

a “left” or “right” response, respectively. Presentation of the stimulus causes evidence to57

accumulate for both the “left” or “right” responses separately, as indicated by the two58

lines (one solid and one dotted) in Figure 1. The vertical axis of the figure represents the59

amount of evidence that has been accumulated, and the horizontal axis shows how much60

decision time has passed. The amount of evidence in each accumulator increases linearly61

until one reaches the response threshold, and the decision time is the time taken for the first62

accumulator to reach threshold. The predicted RT is made up of the decision time plus a63
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non-decision time, quantified by parameter t0
1.64

The slopes of the lines in Figure 1 indicate the rates at which evidence is accumulated65

for each response, and are usually referred to as the drift rates. If the physical stimulus66

favors a “left” response, the drift rate for the “left” response accumulator will usually be67

larger than for the “right” response accumulator. Drift rates are assumed to be set by68

physical stimulus properties and by the demands of the task. For example, in Forstmann69

et al.’s (2008) task, decisions might be made easier by making the displayed dots drift70

more steadily in one direction. This would provide more evidence that “left” was the71

correct response, and the drift rate for the left response would increase. Drift rates are also72

assumed to be modulated by sensory and attentional processing, and the overall efficiency73

of the cognitive system. For example, Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann74

(2007) found larger drift rates for participants with higher working memory capacity and75

fluid intelligence. In the LBA, there are two different drift rates: one for the correct response76

and another for the incorrect response (the two sloping lines in Figure 1). The relative size of77

drift rate parameters describes differences in task performance between different conditions78

or groups. Importantly, although not explicitly illustrated in Figure 1, drift rates in the79

LBA are assumed to vary randomly from trial-to-trial according to a normal distribution80

with mean v and standard deviation s, reflecting trial-to-trial fluctuations in factors such81

as attention and arousal.82

The amount of evidence in each accumulator before the beginning of the decision83

process also varies from trial-to-trial. The starting evidence for each accumulator is assumed84

to follow a uniform distribution whose minimum value is set (without loss of generality) at85

zero evidence for all accumulators, and whose upper value is determined by a parameter A.86

Hence, the average amount of evidence in each accumulator before accumulation begins is87

A
2
. The height of the response threshold that must be reached is called b, and is represented88

by the horizontal dotted line in Figure 12. The value of b relative to the average starting89

activation (A
2
), provides a measure of average response caution, because the difference (b−A

2
)90

is the average amount of evidence that must be gathered before a response will be triggered.91

In Figure 1, the same response threshold (b) is used for both accumulators; this indicates92

that the same amount of evidence is required, on average, before either response is made. If93

participants choose to favor one particular response (i.e., a response bias), b and/or A might94

be smaller for the preferred response. Response bias leads to a speed-accuracy trade-off, as95

the preferred response is made more quickly, but it is also made more often when incorrect,96

reducing accuracy.97

The time taken for each accumulator in the LBA to reach threshold on any given trial98

is the distance between the response threshold and the start point of activation, divided by99

the rate of evidence accumulation. The observed decision time on any given trial, however,100

is the time for the fastest accumulator to reach threshold. The formula for the distribution101

across trials of the time taken for the fastest accumulator to reach threshold is given by102

Brown and Heathcote (2008). This formula makes it possible to estimate the model’s103

parameters from data.104

1Sometimes, the amount of non-decision time is assumed to vary from trial-to-trial with a uniform
distribution, especially for Ratcliff’s diffusion model (e.g., Ratcliff & Tuerlinckx, 2002).

2When estimating parameters for the LBA b is always constrained to be greater than A
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Figure 1. A typical LBA decision for the task in Forstmann et al. (2008). In the current trial a left
stimulus has been presented and so drift rates for the left and right accumulators have been sampled
normal distributions with means v and 1 − v,respectively, and a common standard deviation s.
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Example LBA Application105

Choice RT models are most appropriate for paradigms requiring simple and rapid106

decisions3. Forstmann et al.’s (2008) participants made simple decisions with average RTs107

around one second, so the paradigm is appropriate. Their experiment investigated the108

neural correlates of the trade-off between speed and accuracy, by testing predictions from a109

neurophysiological theory of how response caution is implemented by sub-cortical decision110

circuits. They presented participants with a cloud of 120 moving dots, of which 60% moved111

coherently to either the left or right of the screen, while the remaining 40% moved in random112

directions. Participants were asked in which direction (either “left” or “right”) the cloud113

appeared to move. Before each trial, participants were given one of three cues, indicating114

whether they should try to make a very accurate response (accuracy emphasis), or a very115

fast response (speed emphasis), or try to balance accuracy and speed (neutral emphasis).116

Twenty participants each completed 280 trials per emphasis condition; other methodological117

details can be found in the original article.118

The manipulation of response caution using cues had the expected effect. On average,119

participants were faster under speed emphasis (R̄T = 429ms) than under neutral emphasis120

(R̄T = 515ms) or accuracy emphasis (R̄T = 555ms). The faster responses came at the cost121

of lower accuracy: in the speed condition, 77% of responses were correct, in the neutral122

condition this was 86% and 87% in the accuracy condition. This pattern of data - trading123

accuracy for speed - is consistent with the effects of manipulating response caution in a124

choice response model (i.e., moving the response threshold higher and lower). However,125

it is also possible that participants were doing something more complicated. For example,126

non-decision processes (t0) might also have been faster under speed emphasis, or the quality127

of information (drift rate, v) might have been greater under accuracy emphasis. Forstmann128

et al. (2008) examined these possibilities by comparing the fit of the LBA model using a129

range of different parameter constraints. This analysis allowed them to infer which cognitive130

processes were influenced by the experimental manipulation. In the next section we address131

this detailed problem of selecting the best set of parameter constraints. First, however,132

we briefly review parameter estimation for choice RT models and some other assumed133

knowledge.134

Fitting the Model135

Parameter estimation136

A choice RT model, like any quantitative theory, is defined by numerical parameters,137

and changing these parameters alter the model’s predictions about RT and accuracy. For138

example, increasing the response threshold parameter increases accuracy and both slows and139

increases the variability of predicted RTs. Increasing the drift rate also increases accuracy,140

but it has the opposite effect on RT, reducing both the mean and variability. Non-decision141

time affects mean RT, but has no effect on RT variability or accuracy.142

The aim of fitting a model to data is to find parameter values which yield model143

predictions that best match observed data. The degree of match between the observed data144

3Although similar models have been extended to more complicated judgments (e.g., Busemeyer &
Townsend, 1992, 1993).
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and model predictions can be quantified by an objective function, which takes into account145

both decision accuracy and the distribution of RTs for each type of response. Automated146

search algorithms are used to find the best fitting parameter values – those that optimize147

the objective function.148

There is a great deal of literature, including several tutorials, dealing with the choice149

of objective function and optimization algorithm (e.g., Heathcote, Brown, & Mewhort, 2002;150

Myung, 2003; Ratcliff & Tuerlinckx, 2002; Van Zandt, 2000). For the purpose of this tutorial151

we assume that the reader has a reasonable grasp of the issues associated with parameter152

estimation. Our starting assumption is that the reader is capable of finding the best-fitting153

values for some given set of free parameters (and some data, and a model). The appendix154

contains a general review of issues related to fitting and parameter estimation for choice155

RT models, with a particular emphasis on the model and fitting methods used herein.156

The purpose of this tutorial is go beyond finding the best estimates for certain free157

parameters, and instead to find the best set of free parameters to estimate. This issue158

is critical since choice RT models are often used to determine which decisional processes159

are influenced by specific experimental manipulations. This is the same as asking which160

parameters of the model systematically vary across a set of conditions produced by an161

experimental manipulation. To illustrate, we analyze Forstmann et al.’s (2008) data high-162

lighting several issues regarding the selection of which parameters can and should change163

across experimental conditions.164

Which parameters change across conditions?165

Forstmann et al.’s (2008) experiment had three emphasis conditions (speed, neutral166

and accuracy) and in each of these conditions there were two types of stimuli (coherent167

motion to the left or to the right). One of the central tasks of cognitive modeling for168

these data is to investigate which aspects of cognitive processing were influenced by the169

experimental factors. In model terms, we want to know which parameters changed across170

conditions.171

A priori assumptions.172

To begin, we first decide which parameters potentially could change. The LBA model173

has five parameters that determine the behavior of an evidence accumulator in any condition174

(b, A, s, t0, v), and there are always two accumulators for each decision (one for the response175

“left” and one for the response “right”). This means that there could be up to 10 parameters176

which vary for each particular combination of stimulus and emphasis conditions, for a total177

of 60 parameters. Thankfully, this type of freedom, though possible, is not usually required,178

because sensible a priori constraints can be placed on parameters across conditions. We179

elaborate these constraints by considering three factors in succession: “left” vs. “right”180

responses; left-moving vs. right-moving stimuli; and decision caution conditions (speed,181

neutral or accuracy emphasis).182

The two possible responses (“left” and “right”, corresponding to the two accumula-183

tors) should share many parameters. Usually, t0 can be fixed at the same value for both184

because in most cases it is reasonable to assume that the time to execute each response is185

the same. This assumption is plausible for the present data, but may break down in unusual186

paradigms, such as when one response is harder to produce than another. In contrast, the187
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evidence threshold parameter (b) and the parameter for the level of between-trail variabil-188

ity in starting points (A) might reasonably vary between responses – because participants189

might be biased toward one response over the other. For example, if participants are biased190

to respond “left” rather than “right”, this can be reflected in smaller values of b and/or A191

for the “left” accumulator than the “right” accumulator.192

Response biases may or may not occur, depending on individual differences between193

participants. However, when choice accuracy is above chance, every participant ought to194

demonstrate a difference in drift rates between “left” and “right” accumulators as a function195

of which response is correct for a given stimulus. That is, on trials where the stimulus drifts196

to the right, the mean drift rate should be higher for the accumulator corresponding to the197

“right” response than for the “left” response. Often, greater simplification can be obtained198

by fixing the mean drift rate for the incorrect response at one minus the mean drift rate for199

the correct response. This restriction has commonly been applied because it also satisfies200

a scaling property applying to all choice RT models, which requires at least one parameter201

to be fixed in order to obtain unique estimates of the remaining parameters. However,202

applying this restriction to drift rates across all conditions provides greater constraint than203

necessary, and can result in poor fits. We advise careful consideration about whether this204

restriction is justifiable on theoretical grounds, before applying it (for further discussion see205

Donkin, Brown, & Heathcote, 2009).206

Finally, though it is possible that between-trial variability in the drift rate, s, can207

differ across responses, it has been fixed to the same value in all applications of the LBA208

to date, and the same is true, to our knowledge, of analogous parameters in other evidence209

accumulation models. We follow this convention here, but note that this is an additional,210

and untested, assumption.211

To sum up, the only parameters that we might allow to take on different values212

for “left” than “right” response options are b and A. We will further assume that v is213

constrained to sum to one across “left” and “right” responses, within any condition, as this214

seems a reasonable assumption for Forstmann et al.’s (2008) experiment, in which increased215

evidence for one response (e.g., more dots moving left) necessarily implies decreased evidence216

for the other response (e.g., fewer dots moving right).217

Next, consider which parameters could vary between left- and right-moving stimuli.218

In Forstmann et al.’s (2008) experiment, left- and right-moving stimuli were randomly219

ordered over trials. It is typically assumed that changing response threshold settings is a220

relatively slow process, so threshold parameters (b and A) cannot be adjusted in response to221

which particular stimulus has been presented for the current decision (Ratcliff, 1978). More222

generally, b and A are usually fixed across conditions whenever the participant is unable223

to predict which of those conditions will occur next. Since the other parameters (v, s and224

t0) are assumed to be determined largely by the properties of the presented stimuli, they225

should be free to vary across stimuli. For example, left-moving stimuli may, for some reason,226

provide more salient motion cues than right-moving stimuli, which should be reflected in a227

higher drift rate.228

Finally, consider which parameters might vary between speed, neutral and accuracy229

emphasis conditions. Following convention, between-trial variability in drift rate (s) is usu-230

ally fixed across experimental conditions, particularly those not stimulus-based – although231

this assumption is not strictly necessary. All other parameters (b, A, v and t0) could feasibly232
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be influenced by response emphasis.233

Together, this relatively liberal set of constraints, based on theoretical plausibility,234

and some conventions, reduces the number of free parameters from 60 to 26. To keep235

notation compact, we subscript the parameter names with “left” or “right”, to indicate left-236

moving vs. right-moving stimuli, and with “L” or “R” to indicate evidence accumulators237

corresponding to “left” vs. “right” responses. The 26 possible free parameters which remain238

are: sleft, sright and three sets of bL, bR, AL, AR, vleft, vright, t0left
and t0right

, one for each239

emphasis condition.240

Which parameters need to change to fit the data?.241

We next examine the data to identify which of the 26 free parameters are actually242

needed. There are two ways this has been approached in the literature. The first is to fit243

the model to each participant’s data with all 26 free parameters, and then examine how244

parameter estimates differ across conditions. To demonstrate this approach, we fit each245

individual’s data from Forstmann et al.’s (2008) experiment using maximum likelihood246

estimation (MLE) and a SIMPLEX search algorithm (see the appendix for computational247

details). As discussed in the appendix, obtaining good parameter estimates for such a248

complex model (26 free parameters) is not easy – a drawback of this particular approach.249

Figure 2 suggests some general ideas about which parameters might vary across con-250

ditions. For example, both the drift rate (v) and its standard deviation across trials (s)251

were larger for left-moving than right-moving stimuli. However, the much smaller differ-252

ence (relative to the standard error bars) for the non-decision time plot suggests that t0253

probably did not change between stimuli. Similarly, the evidence threshold (b) and start254

point variability (A) parameters did not change much between “left” and “right” responses.255

These two parameters, however, changed substantially between the three response-caution256

conditions (left to right across the plots). Non-decision time and drift rate showed much257

smaller changes between emphasis conditions.258

Differences between parameter estimates can be tested for statistical reliability using259

a repeated measures analysis of variance (ANOVA). The results of these tests help to decide260

which parameters are significantly affected by which manipulations. However, such tests261

bear only on the question of whether the population means for the parameters vary between262

conditions. It is quite possible that there is no difference in population means between263

conditions and yet there is substantial and systematic variation among conditions due to264

individual differences. If this is the case fixing parameters to be the same over conditions for265

fits to individual participants may introduce substantial misfit that will distort the model266

selection process. A full solution to this dilemma requires a hierarchical approach, which267

produces explicit estimates of population means and variability for each parameter type by268

fitting the model to all data from a group of participants simultaneously. Vandekerckhove,269

Tuerlinckx, and Lee (2008) develop this approach for Ratcliff’s diffusion and we are presently270

doing the same for the LBA (see Donkin, Averell, et al., 2009). However, hierarchical271

versions of the models impose greater computational burdens, so in this tutorial we focus272

on methods based on fitting each participant’s data separately.273

Given the limitations of this initial free-fitting method, we recommend it be aug-274

mented with a second method based on sequential model building. This method also uses275

individual analysis (without between-subject hierarchies), but it is still sensitive to the need276
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Figure 2. Parameter estimates averaged over participants across emphasis conditions, responses
and stimuli. Error bars are +/-1 standard error.

to allow for individual differences. The key to this approach is to fit many different versions277

of the model, beginning with the simplest version (identical parameters for all conditions;278

only five free parameters in total) and ending with the most complex (with 26 free param-279

eters, in our example). This approach can be computationally demanding because there280

might be very many intermediate models to analyze. The intermediate models are formed281

by considering all factorial combinations of parameter constraints. For example, after esti-282

mating the simplest model, one might next estimate a model where drift rate was free to283

vary between left-moving and right-moving stimuli. After that, both of those first two mod-284

els would be used to start parameter searches for even more complex models, perhaps with285

the boundary separation parameter free to vary across speed/accuracy emphasis conditions.286

This process continues through to the most complex model.287

After estimating the parameters of all the intermediate models, one model is selected288

that best satisfies the trade-off between simplicity and goodness-of-fit. Since each inter-289

mediate model is nested within a more complex version, each model’s goodness-of-fit must290
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necessarily improve with the number of estimated parameters. However, when the im-291

provement is small it may be due to “over-fitting”, where the extra parameters serve only292

to account for unsystematic noise in the data. Such over-fitting is undesirable because it293

leads to a model that poorly predicts new data, and may produce theoretically misleading294

patterns of parameter estimates.295

One method of identifying over-fitting is to choose the model with the smallest AIC296

(Akaike Information Criterion, Akaike, 1974) or BIC (the Bayesian Information Criterion,297

Schwarz, 1978). Parameter estimation using maximum likelihood is most appropriate for298

this purpose as both information criteria are calculated by adding a penalty to −2 times299

the log-likelihood of the model. The penalty quantifies model complexity based on the300

number of estimated model parameters, k (2k for AIC and log(N)×k for BIC, where N is301

the number of data points).302

We use BIC in our application, as the AIC is known to choose overly complex models303

in large samples, although we acknowledge that there are other grounds on which to prefer304

some other approaches. Both methods are also limited because they do not take account305

of differences in functional form complexity (Pitt & Myung, 2002) between models: that306

is, both statistics treat all parameters as equal in terms of model complexity, but this may307

not be true. For example, even when two models have the same number of parameters one308

model may have more flexibility in fitting data due to differences in the way that the models309

restrict interactions amongst parameters. Model selection methods that address this issue,310

such as the Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin, & van der311

Linde, 2002) require Bayesian estimation (see also Donkin, Averell, et al., 2009).312

The ideal data driven version of this second, nested-model, approach requires fitting of313

all factorial combinations of restrictions on the 26 parameters. However, that is not always314

feasible because it can require estimating parameters for many thousands of models. If the315

computational load is too great, one can make an initial simplification by fixing parameters316

whenever the free estimates (from Figure 2) suggest that those parameters do not change317

across conditions. For example, non-decision time does not appear to be influenced much by318

either different stimuli or emphasis conditions, suggesting that just one t0 estimate will do319

for all six conditions. Similarly, response threshold and start point variability appear not to320

vary across different responses, but only for different emphasis conditions. Based on these321

observations we might narrow down the options to a model with five different ways that322

parameters could vary over conditions, and 15 free parameters: b, A, vleft and vright for the323

three emphasis conditions, and one each of sright, sleft and t0. It is important at this point324

to remember the limitations, discussed above, of making inferences about the population325

parameters based on average parameter estimates from the minimally-constrained model.326

These limitations mean that the short-cut method we used to move from the 26-parameter327

model to the 15-parameter model should only be employed when the computational burden328

associated with exhaustively estimating the intermediate models is too great.329

We also note that the interpretation of Figure 2 and the subsequent choices about330

which parameters should be fixed have a subjective element. For example, we chose to fix A331

across responses but let it vary across emphasis conditions. It is certainly arguable from the332

upper left plot in Figure 2 that either both or neither form of parameter variability may be333

necessary. A more formal method would be to perform ANOVA on the parameter estimates,334

but we are cautious about recommending the blind application of this approach given its335
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inherent limitations in terms of providing positive evidence in favor of a null difference.336

Instead, when it is not clear whether a parameter might vary across conditions, it is best337

to use the methods outlined in the next section to further investigate. Although we do not338

allow A to vary across responses in the following analysis, further investigation suggested339

that A should be fixed across both responses and emphasis conditions – we demonstrate340

this for emphasis conditions, but not responses, below.341

Model Selection Example342

The 15 free parameters that may account for our data are generated from five ways343

that parameters might vary across experimental conditions; b, A, and v might vary over344

emphasis condition, and v and s might vary across stimuli; for convenience, we will call these345

the five “features” of the model. One way to determine which of these features are required346

by the data is to fit all 31 possible combinations of models made up of these features, i.e.347

one model with all five features, the five models with four features, the 10 models with348

three features, etc., and select the best model using BIC values. This method is by far the349

most comprehensive, and indeed could be extended out to all nine features of parameter350

variations which were earlier deemed plausible. Such an approach using all nine features351

would require 511 models to be fit separately to each participant’s data. Forstmann et al.’s352

(2008) model selection analysis was based on an exhaustive evaluation of set of models of353

this size, although with slightly different features4.354

We estimated the parameters for all 31 possible combinations of models made up355

of the five features. Models were fit individually to each of the 20 participants and for356

each participant a set of parameters and a BIC was calculated. We use BIC summed357

over participants, which we will call “total BIC”, to describe group-level results. The358

results of the total BIC analysis for the most complex model and the intermediate model359

which yielded the smallest BIC value are reported in Table 1. The most complex model,360

with all five features, has a much larger BIC value (-15226) than the best intermediate361

model (-15653) indicating that this intermediate model provides a much better compromise362

between goodness-of-fit and model complexity5. The best intermediate model has only363

two features, and eight parameters. Averaged across participants, those parameters were:364

vleft = 0.72sec−1 and vright = 0.67sec−1, bacc = 0.29, bneu = 0.27, bspeed = 0.17, s =365

0.22sec−1, A = 0.15 and t0 = 0.11sec.366

It is interesting to note that the average parameters estimated for our eight parameter367

model, with the exception of t0, roughly correspond with the values freely estimated for the368

speed condition in Figure 2. For example, in Figure 2 average drift rate for left stimuli,369

0.73, is close to the average value of 0.72 estimated in our eight parameter model. Similarly,370

drift rate for right stimuli is 0.66 compared with our estimate of 0.67 in our reduced model.371

Because RTs are less variable in the speed condition we might expect to see the model under372

predict variability in accuracy and neutral conditions. The model compensates, however,373

4Sequential model selection techniques, such as the forward, backward and stepwise methods commonly
used in linear regression model selection, provide an alternative method of reducing computational cost.
Although not discussed further here we note that such techniques could be applied to selection amongst
choice RT models, either based on likelihood ratio tests, as is common practice with linear regression models,
or based on BIC (Hoeting, Madigan, Raftery, & Volinsky, 1999).

5See Wagenmakers and Farrell (2004) for formal methods of comparing BIC differences that can be
employed when results are not so clear cut
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Table 1: Which parameters were allowed to vary over which factors (Responses: “left” or “right”,
Stimuli: Left or Right, and Emphasis: Accuracy, Neutral or Speed), number of parameters (k), and
total BIC of the best fitting model from each step of the model selection procedure we used.

Factor
Model Responses Stimuli Emphasis k Σ BIC

Most Complex - v s b A v 15 -15226
Best Intermediate - v - b - - 8 -15653

by setting t0 to be smaller in the eight parameter model (0.11 compared to around 0.22 in374

Figure 2) because this increases RT variance when response thresholds are large.375

These results suggest that the participants reported by Forstmann et al. (2008) were376

able to extract information from left-moving stimuli around 8% faster than for right-moving377

stimuli. Also, manipulation of response emphasis affected only one cognitive process: the378

amount of evidence required before responding. Relative to the neutral condition, partic-379

ipants set evidence thresholds 7% higher under accuracy emphasis and 37% lower under380

speed emphasis. Note that the final model chosen in the present analysis is very simi-381

lar to that selected in the original paper, except that the model selected here constrained382

between-trial drift rate variability for left- and right-moving stimuli (this possibility was not383

examined in the original analysis). However, our results are consistent with the major con-384

clusion of the original paper, that the emphasis instructions selectively affect the response385

threshold.386

Evaluating and Presenting Model Fit387

Another important selection criterion is the descriptive adequacy of the model, which388

can assessed graphically. A model is inadequate if it fails to describe important patterns389

in the data. Similarly, if the parameter estimates vary across conditions in ways that make390

no sense, the model is suspect in terms of its theoretical adequacy. The average parameter391

estimates for the best intermediate model given in the last section appear to be adequate392

on the latter grounds, as did the corresponding parameter estimates for all individuals. In393

this section we describe how to graphically check model adequacy.394

The match between model and data should be assessed for each individual partici-395

pant. However, the final communication of results almost always requires a summary of the396

grouped data. Such averages can fail to represent the individual participants, depending on397

how they are constructed. As an extreme example, suppose that an experiment had just398

two participants, one who responded very quickly and another who responded very slowly.399

In this case, an “average” histogram formed by simply pooling data could be bimodal, and400

so not be representative of either individual6. It is often better to first calculate statistics401

which summarize the RT distribution and then average those. Regardless of the method402

used, one should always check how well averaged data matches the individual participants.403

6Even though data grouped this way will not necessarily look like any individual’s data, a similarly-
grouped graph of the model predictions still provides a valid assessment of model adequacy.
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The agreement between model and data is usually assessed by plotting together pre-404

dicted and observed statistics that summarize RT distributions and response probabilities.405

Histograms depicting the observed RT distribution are often overlaid with the predicted406

PDF from the model, to assess model fit. Such plots are simple to interpret, but do not al-407

ways highlight the shortcomings of the model. Cumulative probability plots (e.g. Forstmann408

et al., 2008), or quantile-probability (QP) plots (e.g. Ratcliff & Smith, 2004), are a little409

more complicated to produce and read, but can better reflect differences between the model410

and data. Group QP or cumulative probability plots, which are obtained by averaging411

quantiles for each individual, also have the advantage that they tend to be more represen-412

tative of individual results (e.g., such averages do not suffer from the bi-modality problem413

that occurs with histograms). To represent the model predictions on these plots at the414

group level, one calculates the model’s predicted quantiles for each individual and averages415

these together in the same way as the data. This means that we apply the same averaging416

process to create summary information for model predictions as for the data, and so both417

summaries are subjected equally to any distorting effects of averaging.418

Figure 3 summarizes Forstmann et al.’s (2008) data and the corresponding LBA model419

fits using QP plots. QP plots are an efficient way of displaying the important information420

from a set of choice RT data – the horizontal axis contains response probability (accuracy)421

information and the vertical axis contains information about the RT distribution. There422

are six QP plots in Figure 3, with each plot representing the RT distributions from a single423

experimental condition. Each plot contains two sets of vertically aligned points, illustrating424

the RT distributions for correct and incorrect responses from one experimental condition.425

The horizontal position of a set of vertically aligned points represents the proportion of426

responses making up that RT distribution. For example, in the top left panel of Figure 3 the427

observed quantiles (solid squares) sit above 0.89 on the horizontal axis, indicating that 89%428

of responses were correct in that condition (left-moving stimuli under accuracy emphasis).429

Note also that this implies that 11% (i.e., 100%-89%) of responses were incorrect, and that430

the quantiles for these errors do indeed sit at 0.11 on the horizontal axis. In general, points431

to the left and right of 0.5 on a QP plot indicate incorrect and correct responses, respectively.432

The position of points on the vertical axis are determined by a set of five quantile estimates433

(.1, .3, .5, .7 and .9). The .1 quantile estimate corresponds to the value below which .1, or434

10%, of the RT values in the distribution fall. The five quantile values together, therefore,435

summarize the RT distribution. For example, the first filled square above 0.89 in the top left436

panel shows the .1 quantile for correct responses in that condition. The next square above437

this shows the .3 quantile, and so on. The unfilled squares provide the same information,438

but for the distributions predicted by the LBA model, rather than for the observed data.439

Note that QP plots can be constructed with any desired set of quantiles, such as with440

deciles or semi-deciles. Using more than five quantile estimates will provide a more detailed441

description of the RT distributions, but can also make the plots difficult to read. Similarly,442

results for more than one condition can be given in the same graph. This often works well443

when the conditions differ sufficiently in accuracy. For example, we could have given results444

for accuracy and speed conditions in the same panel. In contrast, the neutral and accuracy445

conditions are quite similar in accuracy, so providing results for these two conditions in the446

one plot can make the QP plot hard to interpret.447

Figure 3 reveals the following general patterns: Responses in the speed emphasis con-448
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Figure 3. A quantile probability plot for the data from Forstmann et al. (2008). Observed and
predicted quantiles are represented by solid and open symbols, respectively. Responses to left-moving
and right-moving stimuli are represented in the top and bottom rows, respectively. Accuracy, neutral
and speed emphasis conditions are shown in the left, center and right columns, respectively. Error
bars show standard errors across participants for both data and model predictions.
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ditions (right column of Figure 3) are faster, as indicated by their lower position on the449

vertical axis, than in accuracy and neutral conditions (left and center columns, respectively).450

Responses for left-moving stimuli (top row) are more accurate than for right-moving stimuli451

(bottom row). This shows up in the figure because quantiles in the top row sit at more452

extreme horizontal positions than those in the bottom row. For example, quantiles for left453

stimuli in the speed condition are positioned at 0.18 and 0.82 on the horizontal axis, while454

the same quantiles for right stimuli sit above 0.27 and 0.73. The addition of lines joining455

corresponding quantiles for correct and incorrect responses in Figure 3 highlights a theo-456

retically important issue, the relative speed of correct and incorrect responses for different457

emphasis conditions. In these data, incorrect responses are faster than correct responses in458

the speed-emphasis condition, but this difference is reversed in the accuracy-emphasis con-459

dition. The model does a good job of accounting for these patterns. However, the QP plot460

also reveals shortcomings of the model, with the most evident being a tendency to predict461

too many incorrect responses for right-moving stimuli. If this failing were considered to be462

practically or theoretically important selection of a more complex model that addresses this463

issue might be warranted.464

Producing a QP plot requires calculation of the .1, .3, .5, .7, and .9 quantiles for465

observed and predicted RT distributions. Quantile estimates from the observed data can466

be calculated using functions available in most statistical software (for more details see467

Heathcote et al., 2002; Van Zandt, 2000). Quantiles were calculated for each individual468

participant and then averaged together to create the observed quantiles in Figure 3. It469

is always important to check that the summary information to be presented in a QP plot470

is representative of individuals. In the current data set over eighty percent of individual471

quantile estimates were within 50 ms of their respective average values, suggesting that our472

averages were representative of individual RT distributions.473

Calculating the quantile values predicted by the model is a little more difficult. There474

are two standard approaches: either using a search algorithm to invert the cumulative distri-475

bution function (CDF) of the model, or via simulation. To generate the predictions shown476

in Figure 3, we used the conceptually simpler, but computationally more expensive, simu-477

lation method (see our appendix for details on the search method). To calculate predicted478

quantiles via simulation, we took each individual’s best fitting parameters and used them to479

simulate a large amount of data (one million data points in each condition). The simulated480

data followed the exact same design as the empirical data – i.e., three emphasis conditions481

and two stimulus conditions, where only drift rate changes over stimulus conditions and482

only response threshold changes over emphasis conditions. For details on simulating data483

from the LBA see Donkin, Averell, et al. (2009), and for other choice RT models see Brown,484

Ratcliff, and Smith (2006). Finally, we calculated quantiles from these simulated data, and485

averaged across participants, in the same way as for the observed data.486

Rather than plotting the predicted quantiles averaged over individuals, Ratcliff and487

colleagues suggest fitting the model to the average observed quantiles to create model pre-488

dictions for QP plots (e.g., Ratcliff, 2002; Ratcliff, Gomez, & McKoon, 2004). This approach489

can appear to indicate a better fit than the method we describe here, since model predic-490

tions will be based on parameters which optimize that fit. However, one risk with this491

approach is that the newly estimated parameters may not be representative of the param-492

eters of any individual. For this reason, Ratcliff and colleagues always assess how closely493
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these new parameters match the average individual participant parameters. Further, a494

quantile-based objective function must be used for estimating parameters from the average495

observed quantiles; MLE cannot be used (see the appendix).496

Discussion497

In recent years, the once-difficult process of estimating parameters for choice RT498

models has been made much easier by the provision of software that automates the search499

process. Our aim was to build on these developments by providing advice about, and a500

detailed example of, the many extra steps involved in moving from simple parameter es-501

timation to a more meaningful analysis. We focused on an application of the LBA model502

(Brown & Heathcote, 2008) to data reported by Forstmann et al. (2008). We illustrated503

the canonical problem in such modeling, by first describing how there are – potentially – 60504

free parameters even for Forstmann et al.’s quite simple experiment. We then illustrated505

how this number can be reduced to 26 free parameters in our example by a priori con-506

siderations. Exploratory analysis of the 26 parameter model identified where parameter507

estimates changed substantially across experimental conditions. This resulted in an even508

simpler model with 15 parameters. Finally, we exhaustively fit all 31 simplifications of the509

15 parameter model and selected a final model with 8 free parameters, providing the best510

trade-off between goodness-of-fit and model complexity.511

We also showed how to check the descriptive adequacy of the final model using QP512

plots. The selected model provided a good fit that captured theoretically important features513

of the data, and is consistent with results from applications of alternative evidence accu-514

mulation models to similar paradigms (e.g., Ratcliff & Rouder, 1998), and with Forstmann515

et al.’s (2008) conclusion that a manipulation of response emphasis exclusively influenced516

the amount of evidence required for a decision.517

The particular model selection process we described relies on models formed by fixing518

some parameters across different conditions. In a between-subjects manipulation, different519

conditions are populated by different people, meaning that certain parameters would have520

to be fixed across participants – this requires modeling random effects. Most often for521

choice RT analyses, this problem is handled by estimating model parameters separately522

for individual subjects, then using standard null-hypothesis significance testing (NHST) to523

determine which parameters vary across the between-subjects conditions. As an example,524

imagine that Forstmann et al. (2008) had tested both an older and a younger group of525

participants and thus had an additional between-subject factor. Standard practice would526

then be to fit each individual from both the younger and older groups with the model527

we previously selected, giving observed distributions of each parameter for younger and528

older participants. Standard inferential tests could then be used to determine whether the529

average of certain parameters differ between younger and older groups. For example, an530

independent-samples t-test could be used to determine whether the average non-decision531

time parameter is different for older and younger participants. This approach has been532

used to identify the effects of aging on decisional processes (e.g., Ratcliff, Thapar, Gomez,533

& McKoon, 2004; Ratcliff, Thapar, & McKoon, 2007).534

The method of using NHST to determine differences between subjects carries with it535

all of the usual drawbacks. These may be particularly relevant for the application of choice536

RT models because the typical question is whether some parameter does not change across537
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conditions. For example, Ratcliff and colleagues often find that old and young participants538

do not differ significantly in their drift rate parameters. It is difficult to know if this lack539

of significant finding is due to power or whether drift rate is truly equal for old and young540

participants. Bayesian hypothesis tests such as the Savage-Dickey test (Wagenmakers,541

Lodewyckx, Kuriyal, & Grasman, 2010) allow for direct assessment of the truth of the null542

hypothesis but require the posterior distribution of model parameters. Donkin, Averell, et543

al. (2009) and Vandekerckhove et al. (2008) offer software for producing these distributions,544

but at present the approach is limited by its computational cost.545

Hierarchical modeling, in which parameters are estimated for the distribution of pa-546

rameters at the population level, provides another way to determine differences across both547

between-subject and within-subject conditions. For example, hyper-parameters describing548

the distribution over younger and older groups for particular types of choice RT model549

parameters can be compared using Bayesian model selection techniques. Despite the theo-550

retical merits associated with hierarchical Bayesian parameter estimation, most researchers551

still use the approaches presented in the current tutorial because they are many orders of552

magnitude faster than Markov-Chain Monte Carlo estimation methods. Given how much553

slower these methods tend to be, we expect the individual analysis approach of this tutorial554

to remain relevant for some time to come. Further, the central issue we discuss – choosing555

a set of model constraints from among many possible sets – apply equally to hierarchical556

models and Bayesian estimation.557
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Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual627

differences in components of reaction time distributions and their relations to working memory628

and intelligence. Journal of Experimental Psychology: General , 136 , 414–429.629

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6 , 461–464.630

Smith, P. L., & Ratcliff, R. (2009). An integrated theory of attention and decision making in visual631

signal detection. Psychological Review , 116 , 283–317.632

Smith, P. L., & Vickers, D. (1988). The accumulator model of two–choice discrimination. Journal633

of Mathematical Psychology , 32 , 135–168.634

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of635

model complexity and fit. Journal of the Royal Statistical Society B , 64 , 583–639.636

Tuerlinckx, F. (2004). The efficient computation of the cumulative distribution and probability den-637

sity functions in the diffusion model. Behavior Research Methods, Instruments, & Computers,638

36 , 702-716.639

Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison of four methods for640

simulating the diffusion process. Behavior Research Methods, Instruments, & Computers, 33 ,641

443–456.642

Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: The leaky competing643

accumulator model. Psychological Review , 108 , 550–592.644

Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental645

data. Psychonomic Bulletin & Review , 14 , 1011-1026.646

Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with MATLAB: A DMAT647

primer. Behavior Research Methods, 40 , 61-72.648

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2008). Hierarchical Bayesian diffusion models for649

two–choice response times. Manuscript submitted for publication.650

Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review , 7 ,651

424-465.652

Van Zandt, T., Colonius, H., & Proctor, R. W. (2000). A comparison of two response time models653

applied to perceptual matching. Psychonomic Bulletin & Review , 7 , 208-256.654

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model:655

An empirical validation. Memory & Cognition, 32 , 1206–1220.656

Voss, A., & Voss, J. (2007). Fast–dm: A free program for efficient diffusion model analysis. Behavior657

Research Methods, 39 , 767–775.658



CRTM TUTORIAL 20

Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic659

Bulletin & Review , 11 , 192-196.660

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis661

testing for psychologists: A tutorial on the savage-dickey method. Cognitive Psychology , 60 ,662

158–189.663

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of664

criterion shifts in the lexical decision task. Journal of Memory and Language, 58 , 140–159.665

White, C., Ratcliff, R., Vasey, M., & McKoon, G. (2009). Dysphoria and memory for emotional666

material: A diffusion model analysis. Cognition and Emotion, 23 , 181–205.667

White, C., Ratcliff, R., Vasey, M., & McKoon, G. (in press). Sequential sampling models and668

psychopathology: Anxiety and reaction to errors. Journal of Mathematical Psychology .669



CRTM TUTORIAL 21

Appendix – Additional Details670

The objective function671

A widely used objective function is the likelihood of data x given a model with672

parameter θ: L(x|θ). Finding parameter estimates by optimizing this objective function673

is called maximum likelihood estimation (MLE, see Myung, 2003 for a tutorial on MLE674

methods). Choice RT models predict RT distributions with associated likelihood functions675

that can be used for MLE. The likelihood function corresponds to the model’s joint density676

over the latency of the response (i.e., RT) and the identity of the response (i.e., the choice677

made). Thus, MLE based on these joint densities naturally takes into account both accuracy678

and RT information (see Brown & Heathcote, 2008, for details of the LBA model’s joint679

density functions).680

MLE is a default choice in many areas of statistics because it is unbiased for large681

samples, and because no other method is more efficient, as long as certain regularity con-682

ditions on the model are satisfied. However, choice RT models do not usually satisfy these683

conditions because they predict distributions whose support is determined by an estimated684

parameter, t0 (Heathcote, Brown, & Cousineau, 2004). This can cause maximum likelihood685

methods to spuriously estimate t0 as equal to the minimum RT in a data sample, with686

concomitant mis-estimation of the other parameters. Although it is important to be aware687

of this problem, it can usually be avoided by censoring implausibly fast RT data (e.g., re-688

sponses faster than 200ms, which are likely the result of anticipation). Slow outliers, due to689

processes such as distraction, are more problematic as they are harder to detect than fast690

outliers. Heathcote et al. (2002) showed that – even when estimating simple and regular691

RT models – an estimation method based on data quantiles (quantile maximum probability692

estimation, QMPE, see also Heathcote & Brown, 2004) could be more efficient and less693

biased than MLE in small samples.694

Appropriately selected quantiles can summarize an RT distribution, and more quan-695

tiles lead to a more accurate summary. There are several objective functions that use696

quantiles to summarize the observed RT distributions, and compare these against model697

predictions. Besides QMPE, these functions include the Kolmogorov-Smirnov statistic698

(Voss, Rothermund, & Voss, 2004; Voss & Voss, 2007), χ2 (Ratcliff, 2002), and weighted699

least squares error (Ratcliff & Tuerlinckx, 2002). In practice, the quantile-based objective700

functions require evaluation of the model’s cumulative distribution function (CDF); this is701

different from MLE which requires evaluation of the model’s probability density function702

(PDF). The difference means that quantile-based methods are especially useful for models703

that have easy-to-use algorithms to calculate their CDF, but not PDF (such as Ratcliff’s704

diffusion model).705

With the exception of the Kolmogorov-Smirnov based approach, choice RT modelers706

have mostly used a coarse set of five quantiles: .1, .3, .5, .7, and .9 (Ratcliff & Tuerlinckx,707

2002), which we will describe as the “standard” quantile set. Summarizing the observed RT708

distributions with such a coarse set has the advantage that fitting is only weakly influenced709

by fast and slow outliers. For example, even if 2% of the data were from a fast- guessing710

contaminant process, these would all fall below the 10% quantile estimate, which would711

thus be only mildly affected. Note, however, that there is no necessity for a coarse set of712

quantiles between the smallest and largest values to gain this advantage in robustness, and713
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that Heathcote and Brown (2004) found that the advantages of QMPE in small samples714

only emerged with fine-grained quantile sets.715

Forstmann et al. (2008) analyzed their data using QMPE. Above, we reported analyses716

of the same data using MLE, and we found that the two approaches agreed closely in this717

data set. In general, we have found that, as long as sensible precautions are enforced718

pertaining to outliers, and good starting points are used, MLE performs very well for the719

LBA model. MLE also enjoys a substantial advantage over quantile based methods in720

terms of computational speed. A further advantage is that MLE produces true maximized721

likelihood values, which can be useful for performing the model selection analyses discussed722

in the main body of the paper.723

Finding optimal parameters724

A variety of optimization methods are available, but in our experience these algo-725

rithms differ mostly in speed rather than their ability to find the best set of parameters.726

Here we use the SIMPLEX algorithm (Nelder & Mead, 1965), which is the most commonly727

used search algorithm for choice RT fitting because of its ease of use. More computationally728

efficient optimization algorithms, which require analytic derivatives of the objective func-729

tion, are not generally used because the required derivatives are not easily available. Other730

algorithms operate by numerically estimating derivatives, which can improve efficiency, but731

also decrease numerical stability.732

All parameter search algorithms, such as SIMPLEX, need a set of parameters to begin733

their search, and the consequences of a poor set of starting parameters can be dire – the734

parameter search can get stuck on an estimate that matches the data better than all nearby735

parameter sets but which is much worse than estimates further away (a “local optimum”).736

The search should always begin with parameters that produce model predictions that are737

reasonably close to the data. Identifying such starting values is a large problem in itself,738

with no general solution. Typically, it is best to have two or three different ways to generate739

start values, and then evaluate the goodness-of-fit (i.e., the objective function) at each, and740

choose the best. One easy way to generate start points is to use parameters which have741

been reliably shown to produce reasonable predictions for RT data. For example, Matzke742

and Wagenmakers (2009) provide the average parameter values for the diffusion model743

based on a large number of fits of the model to data, and Donkin, Brown, Heathcote, and744

Wagenmakers (2009) provide equivalent values for the LBA. Another approach to address745

estimation failures is to run a number of searches from a range of start points obtained by746

randomly perturbing the initial start point.747

Alternatively, a good set of start points for parameter search might be generated by748

heuristics, which can be automatically applied to any data to be fit. We have found the749

following set of heuristics useful for the LBA model. We first set the drift rate distribution750

parameters: standard deviation, s = 0.3, and mean, v = 1

2
+ 1

2
Φ( p

s
√

2
), where p is the751

probability of making the response for this accumulator, and Φ is the standard normal752

CDF. For t0 we use 9/10 of the value of the minimum RT from the data. For the maximum753

of the uniform start point distribution, A, we take twice the inter-quartile range of the754

RT distribution, and finally we set the response threshold, b, at 1.25 × A. In general, we755

calculate these heuristic values separately for each experimental condition, and then average756

start points for parameters that are constrained across conditions.757
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Even when a good start point is obtained it is also possible that the search algorithm758

may terminate in a local optimum. When using the SIMPLEX algorithm, this can some-759

times be avoided by performing a sequence of searches, with each new search using the best760

estimate found by the last fit as its starting point. This method can work because each761

new search typically starts with a large simplex that explores parameter values relatively762

distant from those explored in the final stages of the previous search.763

As experimental designs increase in complexity so too can the number of parameters764

that must be estimated, making the search more difficult. For example, if an experiment765

has different levels of task difficulty, it is likely that different drift rates should be estimated766

for those conditions, increasing the total number of free parameters. Nested model fitting767

is a useful technique for overcoming this problem. This involves first fitting simple models768

(such as a model with a single drift rate parameter for all difficulty conditions), and later769

using the resulting parameter estimates as start points when fitting increasingly complicated770

models. For example, consider data from a 2x3 factorial design. Suppose the two factors,771

A and B, are both assumed to affect drift rate. We might first fit a simple model with772

just one drift rate for all six conditions, starting from parameters obtained by averaging773

heuristic estimates based on data from each condition: say that the best-fitting drift rate774

value was 1. We could then fit a model in which drift rate varied across the two levels of775

factor A, say A1 and A2, using 1 as the start point for both levels. Suppose the best fitting776

parameters turned out to be 0.5 and 1.5 for A1 and A2, respectively. The two best fitting777

parameters can then serve to create start points for the full factorial model in which drift778

rate varies over both factors A and B (i.e., the start points for the three levels of factor B779

in A1 would be 0.5, and the start points for the three levels of A2 would be 1.5). However,780

even under this approach there are no guarantees that a search algorithm will find the781

best parameter estimates, and this becomes increasingly true as the number of estimated782

parameters increases7. Hence, it is important to check the quality of fits graphically, as we783

described in the main body of this paper, and to try different starting values in order to784

see if improvements can be obtained for any poor quality fits.785

As well as checking goodness-of-fit graphically, the parameter estimates themselves786

should also be checked for a priori plausibility. Plausibility can be judged relative to typical787

parameter ranges (e.g., for the LBA see Donkin, Brown, Heathcote, & Wagenmakers, 2009).788

When fitting data from a number of participants performing under identical conditions789

consistency among corresponding parameters estimates from different participants can be790

assessed. It sometimes happens that these checks reveal wildly large or small estimates791

of a particular parameter. This usually occurs when the value of that parameter receives792

little constraint from the data (i.e., its value has little influence on the objective function).793

This lack of constraint can be seen by making a graph of the objective function for a range794

of values of the suspect parameter around its estimated value while keeping the remaining795

parameter values fixed at their estimated values. A flat graph indicates a poorly constrained796

parameter.797

For the LBA, poor constraint is most commonly associated with the drift rate param-798

7The performance of the SIMPLEX algorithm degrades markedly when the number of parameters being
optimized is large. We have generally found adequate performance with up to 20-30 parameters, at least
when repeated fits are employed. Beyond this range specialized search algorithms designed for dealing with
high dimensional search spaces may be required.
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eter for incorrect responses. This is particularly the case where observed accuracy is high,799

as there are then very few incorrect responses to constrain the estimate of this parameter.800

This problem did not occur with our example data, as Forstmann et al.’s (2008) participants801

made incorrect responses on 13% of trials even in the most accurate condition, and a large802

number of trials were performed, so this equates to about 36 error RT observations per par-803

ticipant in this condition. However, in paradigms where accuracy is very high, prohibitively804

many trials may be required to obtain enough error responses. Ludwig, Farell, Ellis, and805

Gilchrist (in press) describe a method of circumventing this problem, using the LBA, that806

relies only on an estimate of the proportion of error responses rather than using error RT.807

An alternative approach, useful for addressing under-constraint for any type of pa-808

rameter, is to constrain parameters to be the same across conditions based on theoretical809

considerations. For example, the manipulation of response caution used in Forstmann et810

al.’s (2008) experiment is commonly assumed to not effect drift rate parameters. If this811

constraint is enforced by assuming the same value of error drift rate across a range of condi-812

tions estimates of this parameter will be constrained as long as there are sufficiently many813

incorrect responses in total across all conditions.814

Maximum likelihood estimation815

In this section, we describe in detail how maximum likelihood estimation might be816

carried out for the example data above. First, consider data just from one emphasis con-817

dition in Forstmann et al. (2008). Let us assume that only drift rate differs between left818

and right responses. We could fit an LBA model for these data with five parameters to819

estimate: (b, A, vleft, vright, s, t0). The vleft and vright parameters represent mean drift rates820

for correct responses to left and right stimuli, respectively, and in the following we refer to821

them generically as vc. We fix the mean drift rates for error responses at ve = 1 − vc for822

both left and right stimuli.823

The likelihood function for the LBA model (see Brown & Heathcote, 2008) is relatively824

easy to compute as it is specified in terms of basic functions and the integral of a normal825

distribution, which has fast and accurate numerical approximations. Brown and Heathcote826

also provide computer code that evaluates the likelihood function. These routines take in827

a set of parameter values, and a response time, say t, and return the probability that the828

accumulator corresponding to the first response has reached threshold before any other,829

and at time t. To get the likelihood for a correct response then the drift rate for the830

first accumulator is set at vc and for the second accumulator at ve (to get the likelihood831

for an incorrect response, one simply swaps the values of the drift rates to be ve and vc,832

respectively).833

The LBA likelihood function for a single response corresponds to a defective (or joint,834

over accuracy and RT) probability density function (PDF), because it does not integrate835

to one, but instead to the probability that the corresponding accumulator was the first836

to reach threshold. For example, if the defective density for the accumulator for correct837

responses in the easiest condition integrates to .95 given a set of parameters, then the model838

predicts 95% correct responses in the easy condition. This also means that the same set839

of parameters will produce a defective likelihood function for the error accumulator that840

integrates to .05.841

To construct the maximum likelihood objective function, we evaluate the likelihood842
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function at each and every observed RT value, and multiply them together – this gives the843

likelihood of parameter set θ given the entire data set. We use every RT value because we844

want the set of parameters θ = (b, A, vleft, vright, s, t0) that is most likely given the four RT845

distributions under consideration: correct and error responses for left and right stimuli. For846

every RT value in each of these distributions, we take the following steps:847

1. Identify the appropriate drift rate (v_left or v_right) depending848

on the stimulus presented on the given trial (left or right).849

2. If the response associated with this RT was correct, set v_1 to the850

drift rate identified from Step #1. If the response was incorrect,851

set v_1 to one minus the drift rate from Step #1.852

3. Set v_2=1-v_1.853

4. Subtract the parameter t_0 from the observed RT, as854

the likelihood equations given by Brown and Heathcote (2008)855

provide the likelihood for the decision time which is856

RT-t_0.857

5. Using the equation for the defective PDF (Equation 3 in858

Brown & Heathcote, 2008), and the drift rates from859

Steps #2 and #3, and the parameters from above, evaluate860

the likelihood function for this observation.861

Once this operation is performed for every observation, the likelihood function can862

be obtained by simply multiplying together all the likelihood values (from Step #5) for all863

the data. However, it is usual to instead take the logarithm of all likelihoods, and then add864

these log-likelihoods together, to improve numerical stability.865

A fast method for producing predicted quantiles866

Predicted quantiles can be obtained more quickly than through the simulation method867

described in the main text by evaluation of the inverse of the CDF of a model. The CDF,868

F (t|θ), of the model gives the proportion of responses made before time t, given parameters869

θ. To find predicted quantile values, we require the inverse of the CDF – that proportion870

of responses made before time t. For choice RT models, however, we are interested in871

the defective CDF, which does not necessarily reach a probability of 1 as t increases. For872

example, if a model predicted that only 65% of responses were accurate in a given task,873

the defective CDF for correct responses would only reach a probability of .65. To evaluate874

the predicted .1, .3, .5, .7 and .9 quantiles for the correct RT distribution, we must identify875

those values of t for which the defective CDF F (t|θ) equals .1p, .3p, .5p, .7p and .9p, where p876

is the predicted response accuracy (p = .65 in our example). When calculating quantiles for877

the incorrect response distribution, the value p is replaced by 1−p, which is the probability878

of an incorrect response (1 − p = .35 for errors in our example).879

For example, consider the .1 quantile of a correct RT distribution. The LBA predicts880

that .1 of this RT distribution is reached at F−1(.1p), where p is the predicted proportion881

of correct responses. In other words the predicted .1 quantile value, say t, is the inverse882

defective CDF for correct responses evaluated at .1p. To get the predicted quantile value883

we first need to calculate the predicted value of p, which is done by evaluating the CDF884
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at ∞: p = F (∞). The inverse of the CDF does not have a closed-form expression that885

can be easily evaluated. Instead, we employ a numerical solution. We are attempting to886

solve F−1(0.1p) = t, which is equivalent to F (t) = .1p. We are left, therefore, with an887

expression we will call Equation 1, F (t) − .1p = 0, which we can now solve using a root888

finding algorithm. The value of t returned by this algorithm, plus t0, is exactly the .1889

quantile prediction for correct responses. We can repeat this process for error responses by890

replacing all instances of p with (1 − p).891

The following steps summarize the calculation of a given quantile corresponding to892

probability q for correct and incorrect responses:893

1. Do steps #1-#3 specified above for maximum likelihood estimation to get894

the appropriate sets of parameters for correct (θc) and incorrect895

(θe) responses.896

2. Obtain the predicted proportion of correct responses (p) by evaluating897

the CDF at infinity given the parameters for say the correct response898

chosen in Step #1.899

3. Use a root finding algorithm to get the correct and incorrect quantiles.900

These correspond to the value of t for which F (t|θc) = qp and901

F (t|θc) = q(1 − p), respectively.902

A QP plot then involves plotting both data and model quantiles for correct and903

incorrect responses in each experimental condition, as explained in the main body of the904
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